
LECTURE 4: FUNDAMENTALS OF GENERAL RELATIVITY (II)

GONG-BO ZHAO

In this lecture, we follow the convention of Ma & Bertschinger (hereafter M & B 95)
[1] to summerise the Friedmann equations for the background and for the perturbations,
which is the foundation of the CAMB code. 1

1. Background

In M & B 95, the conformal time τ was used to denote time, instead of the physical time
t, so let us make it clear that we shall use τ from now on, and use the overdot to denote
the derivative wrt τ and ′ for derivative wrt t.

Note that,
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The Friedmann equation in terms of conformal time,
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2. Perturbation

The general metric including perturbations,

ds2 = a(τ)2
{
−(1 + 2ψ)dτ2 + 2widτdx

i + [(1− 2φ)γij + 2hij ] dx
idxj

}
(5)

where

γijγjk = δik, γijhij = 0(6)

So there are 1 (ψ) + 1 (φ) + 3 (wi) + 6 (hij) − 1 (γijhij = 0) = 10 degrees of freedom,
which coincides with the number of independent entries of a 4× 4 symmetric metric gµν .

1Available at http://camb.info
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If we focus on scalar perturbations, which is the most important and relevant part for
large scale structure of the Universe, only ψ and φ are left, in the so-called Conformal-
Newton gauge.

In this gauge, different components of the Einstein equation yield,

k2φ+ 3H(φ̇+Hψ) = −4πGρδ(7)
k2(φ̇+Hψ) = 4πGa2(ρ+ P )θ(8)

ψ = φ(9)
where δ ≡ δρ/ρ, and we have assumed that the fluids are perfect (thus there is no shear
perturbations).

On sub-horizon scales, where the density perturbation is much more important than the
velocity perturbation, we have the Poision equation, by combining the first two equations,

δ̈ +Hδ̇ = 4πGρa2δ(10)
In a matter-dominated Universe, where,

H2 = H2
0 (Ωma

−3)(11)
so that

H2 ∝ a−1(12)
and let us assume,

δ ∝ an(13)
and substitute Eqs (13,12) into Eq (10), we find that,

n = 1(14)
This means that in the matter-dominated era, δ ∝ a, which is an important conclusion

to bear in mind!
An important implication of the Poisson equation Eq (10) is that one can perform

consistency tests using it, as H and f ≡ dln δ
dln a can be independently measured using SNe

and RSD, respectively. If Eq (10) does not hold when the observables are substituted in,
it might be a smoking gun of modified gravity!

There are other interesting implications of the Poisson equation. See [2] for an exercise
of using it to reconstruct f from H.
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